A New Model Selection Method for SVM
نویسندگان
چکیده
In this paper, a new learning method is proposed to build Support Vector Machines (SVMs) Binary Decision Functions (BDF) of reduced complexity and efficient generalization. The aim is to build a fast and efficient SVM classifier. A criterion is defined to evaluate the Decision Function Quality (DFQ) which blendes recognition rate and complexity of a BDF. Vector Quantization (VQ) is used to simplify the training set. A model selection based on the selection of the simplification level, of a feature subset and of SVM hyperparameters is performed to optimize the DFQ. Search space for selecting the best model being huge, Tabu Search (TS) is used to find a good sub-optimal model on tractable times. Experimental results show the efficiency of the method.
منابع مشابه
Sustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm
For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...
متن کاملAn artificial intelligence model based on LS-SVM for third-party logistics provider selection
The use of third-party logistics (3PL) providers is regarded as new strategy in logistics management. The relationships by considering 3PL are sometimes more complicated than any classical logistics supplier relationships. These relationships have taken into account as a well-known way to highlight organizations' flexibilities to regard rapidly uncertain market conditions, follow core competenc...
متن کاملA new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملDeveloping a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature
According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...
متن کاملH-BwoaSvm: A Hybrid Model for Classification and Feature Selection of Mammography Screening Behavior Data
Breast cancer is one of the most common cancer in the world. Early detection of cancers cause significantly reduce in morbidity rate and treatment costs. Mammography is a known effective diagnosis method of breast cancer. A way for mammography screening behavior identification is women's awareness evaluation for participating in mammography screening programs. Todays, intelligence systems could...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کامل